As the use of Natural Language Models (NLP) and Large Language Models (LLM’s) grows, so does the need for a comprehensive testing solution that evaluates their performance across tasks like question answering, summarization & paraphrasing, named entity recognition, and text classification. With numerous NLP libraries supported – including Spark NLP, Hugging Face Transformers, spaCy, OpenAI, and many additional LLM models and API’s – testing that your AI systems are unbiased, robust, fair, accurate, and representative is crucial.
In this webinar, Luca Martial will introduce the NLP Test Library, an innovative, open-source project developed by John Snow Labs. This powerful tool, available at no cost and installable in one line, allows users to generate and execute test cases for a variety of NLP models and libraries. The NLP Test Library not only tests your NLP pipelines, but also offers the ability to augment training data based on test results, facilitating continuous model improvement.
Join this webinar to explore how the NLP Test Library is transforming the evaluation of NLP models and learn how to harness its features to ensure your AI systems meet the highest standards of responsibility and performance. Visit nlptest.org to access this open-source tool and help our community advance towards a more responsible AI ecosystem.
About the speaker
Luca Martial is a Senior Data Scientist at John Snow Labs, improving the Spark NLP for Healthcare library and delivering hands-on projects in Healthcare and Life Sciences. He also leads product development for the NLP Test library, an open-source responsible AI framework that ensures the delivery of safe and effective models into production.Luca Martial is a Senior Data Scientist at John Snow Labs, improving the Spark NLP for Healthcare library and delivering hands-on projects in Healthcare and Life Sciences. He also leads product development for the NLP Test library, an open-source responsible AI framework that ensures the delivery of safe and effective models into production.