Signature Detection in Spark OCR - John Snow Labs
was successfully added to your cart.

Signature Detection in Spark OCR

Avatar photo
Senior Scala, Python, and Spark software engineer

How to detect signature in image-based documents

For document comprehension pipelines in the healthcare and the financial area, we need some time to detect the signature of the document or classify documents. In most cases, it is image-based scanned documents.

We implemented Signature Detection in Spark OCR as ImageSignatureDetector transformer.

It based on Cascade Region-based CNN networks:

The architectures of CASCADE-R-CNN. “I” is input image, “conv” backbone convolutions, “pool” region-wise feature extraction, “H” network head, “B” bounding box, “C” classification and “B0” is proposals.

Let’s define ImageSignatureDetector and load pre-trained model.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
signature_detector = ImageSignatureDetector() \
.pretrained("image_signature_detector_gsa0628", "en", "public/ocr/models") \
.setInputCol("image") \
.setOutputCol("signature_regions") \
.setScoreThreshold(0.6)
signature_detector = ImageSignatureDetector() \ .pretrained("image_signature_detector_gsa0628", "en", "public/ocr/models") \ .setInputCol("image") \ .setOutputCol("signature_regions") \ .setScoreThreshold(0.6)
signature_detector = ImageSignatureDetector() \
        .pretrained("image_signature_detector_gsa0628", "en", "public/ocr/models") \
        .setInputCol("image") \
        .setOutputCol("signature_regions") \
        .setScoreThreshold(0.6)

Note: Full code of the example in Jupyter notebook you can found here. In order to run the code, you will need a Spark OCR license, for which a 30-day free trial is available here.

For draw bounding boxes to the original image we can use ImageDrawRegion transformer:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
draw_regions = ImageDrawRegions() \
.setInputCol("image") \
.setInputRegionsCol("signature_regions") \
.setOutputCol("image_with_regions")
draw_regions = ImageDrawRegions() \ .setInputCol("image") \ .setInputRegionsCol("signature_regions") \ .setOutputCol("image_with_regions")
draw_regions = ImageDrawRegions() \
        .setInputCol("image") \
        .setInputRegionsCol("signature_regions") \
        .setOutputCol("image_with_regions")

We can assemble the Spark ML pipeline and call it now:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
pipeline = PipelineModel(stages=[
binary_to_image,
signature_detector,
draw_regions
])
result = pipeline.transform(image_df).cache()
display_images(result, "image_with_regions")
pipeline = PipelineModel(stages=[ binary_to_image, signature_detector, draw_regions ]) result = pipeline.transform(image_df).cache() display_images(result, "image_with_regions")
pipeline = PipelineModel(stages=[
        binary_to_image,
        signature_detector,
        draw_regions
    ])
    result =  pipeline.transform(image_df).cache()
    display_images(result, "image_with_regions")

Output image:

‘signature_regions’ has the following schema:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
result.select("signature_regions").printSchema()root
|-- signature_regions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- index: integer (nullable = false)
| | |-- page: integer (nullable = se)
| | |-- x: float (nullable = false)
| | |-- y: float (nullable = false)
| | |-- width: float (nullable = false)
| | |-- height: float (nullable = false)
| | |-- score: float (nullable = false)
| | |-- label: integer (nullable = false)
result.select("signature_regions").printSchema()root |-- signature_regions: array (nullable = true) | |-- element: struct (containsNull = true) | | |-- index: integer (nullable = false) | | |-- page: integer (nullable = se) | | |-- x: float (nullable = false) | | |-- y: float (nullable = false) | | |-- width: float (nullable = false) | | |-- height: float (nullable = false) | | |-- score: float (nullable = false) | | |-- label: integer (nullable = false)
result.select("signature_regions").printSchema()root
        |-- signature_regions: array (nullable = true)
        |    |-- element: struct (containsNull = true)
        |    |    |-- index: integer (nullable = false)
        |    |    |-- page: integer (nullable = se)
        |    |    |-- x: float (nullable = false)
        |    |    |-- y: float (nullable = false)
        |    |    |-- width: float (nullable = false)
        |    |    |-- height: float (nullable = false)
        |    |    |-- score: float (nullable = false)
        |    |    |-- label: integer (nullable = false)

Excep<spant< span=””> for coordinates, it includes also a score. The score is a probability for detected signature. We can filter results by setting the threshold using setScoreThreshold method of ImageSignatureDetector transformer.</spant<>

This approach is useful for document classification too. Let’s add the `signed` field which checks the count of detected regions for classify images (signed/unsigned):

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
result.withColumn("coordinate", f.explode_outer(f.col("signature_regions"))) \
.withColumn("filename", f.element_at(f.split("path", "/"), -1))\
.withColumn('signed', f.size(f.col("signature_regions")) > 0) \
.select("filename", "signed", "coordinate") \
.show(truncate=False)
result.withColumn("coordinate", f.explode_outer(f.col("signature_regions"))) \ .withColumn("filename", f.element_at(f.split("path", "/"), -1))\ .withColumn('signed', f.size(f.col("signature_regions")) > 0) \ .select("filename", "signed", "coordinate") \ .show(truncate=False)
result.withColumn("coordinate", f.explode_outer(f.col("signature_regions"))) \
        .withColumn("filename", f.element_at(f.split("path", "/"), -1))\
        .withColumn('signed', f.size(f.col("signature_regions")) > 0) \
        .select("filename", "signed", "coordinate") \
        .show(truncate=False)

Results can contain one or more signatures. For example:

We can apply Signature Detection also to the PDF documents using PdfToImage transformer:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
pdf_to_image = PdfToImage() \
.setInputCol("content") \
.setOutputCol("image")
pdf_to_image = PdfToImage() \ .setInputCol("content") \ .setOutputCol("image")
pdf_to_image = PdfToImage() \
        .setInputCol("content") \
        .setOutputCol("image")

So we have an end-to-end scalable solution based on Spark NLP OCR for Signature Detection and Classification.

Links

How useful was this post?

Try OCR tool for healthcare

See in action
Avatar photo
Senior Scala, Python, and Spark software engineer
Our additional expert:
Mykola Melnyk is a senior Scala, Python, and Spark software engineer with 15 years of industry experience. He has led teams and projects building machine learning and big data solutions in a variety of industries – and is currently the lead developer of the Spark OCR library at John Snow Labs.

Reliable and verified information compiled by our editorial and professional team. John Snow Labs' Editorial Policy.

Visual NLP: Combining Computer Vision & Text Mining to Understand Real-World Documents

Natural Language Processing (NLP) algorithms and models are great at processing digital text, but many real-world applications use documents with more complex...
preloader