was successfully added to your cart.

    Prompts Engineering in the Generative AI Lab

    Avatar photo
    Ph.D. in Computer Science – Head of Product

    NLP Lab became the Generative AI Lab.
    It comes with support for zero-shot learning via prompts. Prompt engineering is a very recent but rapidly growing discipline that aims to guide language models such as GPT-3 to generate specific and desired outputs, such as answering a question or writing a coherent story. This version of the Generative AI Lab, adds support for the creation and use of prompts for entities and relations identification within text documents. The goal of prompt engineering in this context is designing and crafting some questions, which are fed into a question-answering model together with some input text. The purpose is to guide the language model to generate specific and desired outputs, such as identifying entities or relations within the input text. This release offers features such as the creation and editing of prompts, a dedicated section for prompts management and sharing inside the resources Hub, an optimized configuration page allowing mixing models, prompts, and rules into the same project, and support for quick prompts deployments and testing to the Playground.

    Prompts on the Hub

    The resources Hub has a new page dedicated to prompts. It allows users to easily discover and explore the existing prompts or create new prompts for identifying entities or relations. Currently, Labs for NLP annotation supports prompts for Healthcare, Finance, and Legal domains applied using pre-trained question-answering language models published on the NLP Models Hub and available to download in one click. The main advantage behind the use of prompts in entity or relation recognition is the ease of definition. Non-technical domain experts can easily create prompts, test and edit them on the playground on custom text snippets and, when ready, deploy them for pre-annotation as part of larger NLP projects. Together with rules, prompts are very handy in situations where no pre-trained models exist, for the target entities and domains. With rules and prompts the annotators never start their projects from scratch but can capitalize on the power of zero-shot models and rules to help them pre-annotate the simple entities and relations and speed up the annotation process. As such the Generative AI Lab. ensures fewer manual annotations are required from any given task.

    • Creating NER Prompts

    NER prompts, can be used to identify entities in natural language text documents. Those can be created based on healthcare, finance, and legal zero-shot models selectable from the “Domain” dropdown. For one prompt, the user adds one or more questions for which the answer represents the target entity to annotate.

    Prompts in NLP Lab
    • Creating Relation Prompts

    Prompts can also be used to identify relations between entities for healthcare, finance, and legal domains. The domain-specific zero-shot model to use for detecting relation can be selected from the “Domain” dropdown. The relation prompts are defined by a pair of entities related by a predicate. The entities can be selected from the available dropdowns listing all entities available in the current Generative AI Lab (included in available NER models or rules) for the specified domain.

    Creating relation prompts

    A simplified configuration wizard allows the reuse of models, rules, and prompts

    The project configuration page was simplified by grouping into one page all available resources that can be reused for pre-annotation: models, rules, and prompts. Users can easily mix and match the relevant resources and add them to their configuration.

    Note: One project configuration can only reuse the prompts defined by one single zero-shot model. Prompts created based on multiple zero-shot models (e.g. finance or legal or healthcare) cannot be mixed into the same project because of high resource consumption. Furthermore, all prompts require a license with a scope that matches the domain of the prompt.

    Experiment with prompts in Playground

    Generative AI Lab’s Playground supports the deployment and testing of prompts. Users can quickly test the results of applying a prompt on custom text, can easily edit the prompt, save it, and deploy it right away to see the change in the pre-annotation results.

    Prompts in NLP Lab

    Zero-Shot Models available in the NLP Models Hub

    NLP Models Hub now lists the newly released zero-shot models that are used to define prompts. These models need to be downloaded to NLP Lab instance before prompts can be created. A valid license must be available for the models to be downloaded to NLP Lab.

    Models Hub

    Getting Started is Easy

    The Generative AI Lab is a no-code model tuning and validation tool with the ability of document annotation that can be deployed in a couple of clicks on the AWS and Azure Marketplaces or installed on-premise with a one-line Kubernetes script.
    Get Started with NLP Lab

    How useful was this post?

    Try Generative AI Lab

    See in action
    Avatar photo
    Ph.D. in Computer Science – Head of Product
    Our additional expert:
    Dia Trambitas is a computer scientist with a rich background in Natural Language Processing. She has a Ph.D. in Semantic Web from the University of Grenoble, France, where she worked on ways of describing spatial and temporal data using OWL ontologies and reasoning based on semantic annotations. She then changed her interest to text processing and data extraction from unstructured documents, a subject she has been working on for the last 10 years. She has a rich experience working with different annotation tools and leading document classification and NER extraction projects in verticals such as Finance, Investment, Banking, and Healthcare.

    John Snow Labs Announces the NLP Lab: Free No-Code AI for Domain Experts

    Over the last year, Annotation Lab has grown to be much more than a document annotation tool. It became a full-fledged AI...
    preloader